If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3t^2+4t=0
a = -3; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-3)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-3}=\frac{-8}{-6} =1+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-3}=\frac{0}{-6} =0 $
| -(y/2)+2y=210 | | .......X-y=4 | | 18+9=7n-2n | | .......3(m+1)=6 | | (2x+6)/3=7 | | -4w^2+3w+6=0 | | -4x^2-13=23 | | (9x+6)+(4x+6)+x=180 | | 7(3x+12)=-63 | | 7(3x+12)=63 | | 13m-9=6m-65 | | 4c-41=9c+9 | | (9x+23)(10x+6)=0 | | -0.5x^2-40x-300=50 | | 3x+x+84=180° | | (6x)+(4x)+(2x)=180 | | 3x+3=x+4.3 | | 5x-190=2x+100 | | (4x+14)+(5x+4)+(6x-3)=180 | | 12x+13=5x-1 | | 2a+a2=0 | | (0.125)^x=128 | | 5p-6+3=-3-2p | | 5*n=10+5 | | a+10=0 | | 5x-3=12x11 | | 2(n-1)-5=2(1-n)-1 | | -3x-28=4x+14 | | x^{2}-7x-24=0x2−7x−24=0 | | 27x=+36=15x+108 | | 2(2a+1)-3(a-1)+5=0 | | (5x-3)(2x-1)=0 |